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FOREWORD

The work described in this report was performed by
Lockheed Missiles & Space Company, Huntsville Research &
Engineering Center, for the George C. Marshall Space Flight
Center of the National Aeronautics and Space Administration
under Contract NAS8-21095.

The work was administered under the direction of the

Aero-Astrodynamics Laboratory, NASA/MSFC, with Dr.

George F. McDonough as Contracting Officer Representative.

ii




N &) S SN BN S N NN SR AR A AN B SR A BN B K

*

LMSC/HREC A784826

SUMMARY

This report describes a method of analysis and digital program for
computing the modes and frequencies of arbitrary linear space frames.
Frame members may be either uniform beams or Timoshenko beams with
arbitrarily varying mass and stiffness properties. Provision is also
included for rigid links, lumped masses, concentrated springs, and other

features useful in mathematically modeling complicated linear structures.

The program is applicable to many types of problems, including, for
example, spacecraft clusters such as those currently planned for the Apollo
Applications Program, and clustered vehicles such as Titan III, Saturn IB,

and proposed modified Saturns.

The program is "automatic' in the sense that communications — both
input and output — are concise. Input data consists of minimum definitions
of particular problems (e.g., joint positions, member properties, restraint
conditions, etc.). Output data contains complete solution information,
including computer-generated plots of mode shapes. Several examples are

presented of solutions computed by the program.

The method upon which the program is based is applicable to more

general classes of finite-element structures.
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Section 1

INTRODUCTION

References 1,2,4,5,6 and 8 discuss studies of the modal characteristics
and, in some cases, the dynamic response of complicated linear structures.
The same general method was used in each of these studies. Essentially, it
is as follows:

e The structure is modeled as an assemblage of several inter-

connected pieces. Each piece may be a relatively complicated
structure modeled by finite element methods, etc.

e The state of the structure is represented by a relatively small
number of generalized coordinates, typically including:

1. The displacement and/or rotation components of the boundary
points or surfaces interconnecting the pieces.

2. The coefficients of displacement functions representing the
deformations of individual pieces. Various displacement
functions are used, including:

a.Free vibrational mode shapes corresponding to particular
boundary conditions for individual pieces.

b.Displacement fields associated with particular static loadings.

Several such functions are usually employed for each piece.
They may be determined in various ways; e.g., closed-form solu-
tion, finite element methods, static and dynamic tests, etc,

e The kinetic and potential energies of the structure are evaluated
as quadratic forms in the generalized coordinates:

-* .
T = %Q MQ,
A %—Q¥KQ.

Provided the elements of M and K are constant, Lagrange's
equation gives:

MQ +KQ = F.
In the absence of dissipative effects and active externally-

applied forces, the generalized force vector F is zero, and
solution vectors of the form Q = sinwt X yield the linear,
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small-vibration eigenproblem, wZMX - KX = 0.

Several well-known numerical methods may be used to compute
precise solutions to equations of this type, provided M and K
are not poorly conditioned or of high order,.

The procedure outlined above may be viewed as a generalized Rayleigh-Ritz
technique. As indicated by the excellent comparisons with experimental
results reported in References 4 and 8, very accurate results may be obtained
in this way, provided the displacement functions are well—selected.* However,
substantial '""restraint' errors may result if the displacement functions are not

well-chosen, as illustrated by the example given in Section 6.5 of Reference 4.

Relative to finite element or finite difference methods (as usually applied),
this procedure affords a substantial reduction in eigenproblem order; however,
the order may still be moderately large for complicated structures. For
example, the Saturn V analysis described in Reference 8 involved the solution
of a 147 degree-of-freedom eigenproblem. Although accurate solutions of
well-conditioned eigenproblems this size or larger may be computed by using
existing methods:k’== practical difficulties (principally involving the interrelated
factors of numerical accuracy, computer execution time, machine storage
capacity, complexity of method, etc.) sharply raise costs of solution as the

number of degrees of freedom is increased.

*A good choice of displacement functions is equally, if not more, important
in forced vibration analysis; in which case function selection must be based
not only upon the system boundary conditions but upon the character of the
externally applied forces as well. If coefficients of free vibration modes of
the entire systerm are being used as coordinates in a response analysis, it may
under some conditions be highly desirable to use "mixed' modes (that is
modes corresponding to several different system boundary conditions, e.g.,
for a beam-like structure, some free-free modes and some cantilever modes).
The fact that such functions are not orthogonal usually adds only slightly to
the complexity of the analysis, while significant opportunities are often
afforded for improving the accuracy obtainable with a given number of
degrees of freedom.

&k
>kSee e.g., Reference 7 (Wilkinson).
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This report presents a modified version of the previously outlined
procedure which is applicable to the general linear frame modes-and-
frequencies problem. Degree-of-frcedom requirements are substantially
reduced through the use of whole-structure deformation functions. In addi-
tion, a method is described for determining a sequence of improved dis-
placement functions leading to nominally small errors in the solutions. A
general purpose digital program was developed to implement this formulation

for arbitrary linear space frames. The program includes provision for:

¢ non-uniform beams,
e rigid links offsetting member end points from joints,

e rigid, pinned or elastic connections of member end points to
joints (or rigid links),

e automatic generation of a sequence of improved displacement
functions, and

e additional lumped masses at the joints.

As restraint conditions, an arbitrary set of joint motion components may be

set identically equal to zero.

Features cited above were incorporated into the program primarily to
facilitate mathematical modeling of unusual aerospace structures (such as

the orbital workshop-cluster planned for the Apollo Applications Program).

If the lowest N modes and frequencies of the structure are required,
the procedufe executed by the program involves the solution of eigenproblems
of order 1, 2, ...... N . Accordingly, if only low-frequency modes are

required, only low-order, very well-conditioned eigenproblems are solved.

The procedure implemented by the program to automatically compute
successions of improved sets of displacement functions is essentially a
generalization of the well-known Stodola-Vianello iterative method. Each
modal approximation is used to compute an equivalent static loading for the
entire structure from which a new displacement function is calculated for

use in the succeeding approximation. The key to the computational efficiency
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of the program is the ability of its static analysis routines to economically
compute displacement functions. Results obtained by the program indicate
that the techniques used are well-suited for extension to more general types

of finite-element structures.
Examples are presented of solutions computed by the program.

Elements generally consist of a "member'" and two ''rigid links', as
shown on Figure 1. The rigid links are included in the formulation to

facilitate mathematical modeling of certain kinds of real joints.

i Soint —

origin of mt? member/

mth member

th .
m member reference

. th frame
terminus of m

member

jth joint

rigid link ——2__\

-1

Primary Reference Frame

Figure 1 - Typical Frame Element

1-4
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Section 2
DEFINITIONS

2.1 COORDINATE SYSTEMS

Part of a typical frame, consisting of an array of "joints'" inter-
connected by '"elements' is shown on Figure 2. Joints, which are repre-
sented geometrically as points, are regarded as very small rigid bodies

into which the ends of elements are rigidly embedded.

Element

Joint

Figure 2 - Typical Array of Joints and Elements

One of the end points of each member is designated the member
""origin;' the opposite end is the member '"terminus." Position coordinates
%
(relative to the arbitrarily selected '"primary reference frame'') of joints

and member end points will be represented by the following symbols:

Xf{ = k-direction position coordinate of the lth joint.

* . .
This is a right-hand rectangular system.

2-1
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= k-direction position coordinate of the nth

mn
Yk

end point of the

th
m  member (n = 1l - origin; n = 2 — terminus).

As shown on Figure 1, a distinct '"'member reference frame' is associated
with each member. The orientations of these systems relative to the primary
reference frame are represented by the direction cosine matrix defined below,

Where R;‘? is the cosine of the angle between the i}i axis of the m"> member

th
reference frame and the j axis of the primary reference frame

[ . m Im m
Ri1 Rz Ry
m _ m m m
R = Ry Ry, Rog |
m m m
| R R RY

The D™ matrices defined below represent the rigid link offsets of

member end points from joints. It is assumed in this definition that the origin

and terminus of the mlCh member are connected by rigid links to the _1_111 and

th . . .
] joints, respectively.

B ml i ml i, |
0 (Y - X3 -(Y," - X))
Dml - le Xi) 0 (le Xi)
= -0z -%;3 I |
Pt oxh ot oxd) 0
r— -
ma j m2 j
0 (Y537 - X3) =(Y, " - X3)
. 5 :
D™ - -(Yr;r12 - X3) 0 (v o - x|,
ogtexh e

L3
All of these are right-hand rectangular systems.

2-2
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2.2 MEMBER DISPLACEMENT FUNCTIONS

As illustrated on Figure 3, the total direction-i cross-section
o

displacement and rotation components of a member are u, and ¢i

(i=1,2,3), respectively.

Cross Section

Rotation
Components = {<P1, </>2, ¢3}
Axis of
Displacements = {ul, Uy, \13} Deformed
Member

2 .
\_—" Position of Member
u3 Terminus before
Deformation
2 Position of Member
Origin before
Deformation

Figure 3 - Member in Deformed State

>'<Member reference frame; right-hand rule for rotations.
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In the solution procedures described in Sections 3, 4 and 5, member
deformations are represented by linear combinations of displacement
functions. That is, where s is a position coordinate along the mth member's

central axis, and the n displacement function coefficients (the c's) are

r/

linearly related to the generalized coordinates,

n
u]im(s) = Z C;n vﬁl(s),
and eri
m ,m . )
% (s) = D < e, fori=12,3. (2-1)

Particular displacement functions (the v's and @'s) and the associated

=1

generalized coordinates are discussed in later sections.

2.3 MEMBER ENERGIES

Where, for
m .
U (s) = mass per unit length,
pzn (8) = (effective) cross-section mass moment of inertia
about the ith member axis,
m . . .th .
EIi = bending stifiness about 1™ axis,
m . . .th .. .
kiGA = {ransverse shear stiffness in i direction,
EA™ = axial stiffness,
m . .
GJ = torsional stiffness, and
s _ Of
f = 55

the mth member,

2-4
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the kinetic and potential energies of the member are:

" %1en/;h W (s) [<“r1n) ¥ (“;-n) ' <gn>]

+ pTs) <§51in)2 + P2 (s) (95;“)2 + P75 (s) (453“)2 ds, and

+ G I (s) <¢I3n/)2+EAm(s) (u‘;"f ds . (2-2)

Substitution of Equations (2-1) into (2-2) gives the energies as quadratic

forms in the displacement function coefficients:

length i=1
3 n m m 2
+ Z p (s)[ cJ 61] (s)] ds,
i=1 j=1
1 ™ ~ mm’()ZkGA anm() m':.lz
sz_z_ Z(s) cJ 62] s +k; (s) cJ VIJ OZJ(s)lJ
length j=1 =
m 5 m om 2 ‘
+ +EA™(s) [ZCJ V3J(s)] ds,
j=1
2-5

(2-3)



which may be written as:

m _ 1

T =3
and

m 1

v -2

[¢m gm
1 2

m m

M Mz

m

Ma2

Symmetric
L

m

Kll K12

m

K22

Symmetric
S

where, for j=1 through n and £=1 through n

3
m=_=z
Mjl

1=

length

2-6
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g 8

’

/ 1 (s) vﬁ‘(s) vip(8) + 7 (s) o?g‘(s) 6, (s) | ds ,
1 )

(2-4)



[

and

m:
oo |

length
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EI‘;‘(S) o;_r;'(s) 01;;'(3) tk, GA™(s) [vr;;’(s) - 02(5)][v?}(8) - 0;‘;(3)]

+ Exrln(s)olin(s)oﬂis)wz GA(s) [vg;(,s) + oi?(s)][v;_";(sn oﬁ(s)]

j

+ GI™s) 0’3’;'(.@,) egzis) + E A™(s) vg’;'(s) v‘;;Es)

ds . (2-5)
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Section 3

COEFFICIENTS OF WHOLE-STRUCTURE DISPLACEMENT
FUNCTIONS AS GENERALIZED COORDINATES

The following discussion deals with the use of whole-structure
%
displacement functions corresponding to particular static loadings. ' The
use of such functions is practical because of the availability of accurate and

economical digital programs for analyzing statically-loaded space frames.

Consider, for example, the specific set of displacement functions
shown on Figure 4. (These particular functions have no special significance;
they were arbitrarily selected for illustrative purposes.) We use as general-
ized coordinates the four whole-structure displacement function coefficients
9 corresponding to the illustrated static loadings. The member displacement

function coefficients defined in Section 2.2 can be identified simply as follows:

Cm = q

1 1’

ey’ = q (3-1)
2 2’

an = 93, and

Cm = q, .

4 4

Highly automated methods are available for analyzing arbitrary
statically-loaded space frames; accordingly, all of the member displace-
ment and rotation functions, vgl and o?jl associated with each qj are easily

computed. Reference 3 presents a general formulation of linear static

*_A_n_)_r whole-structure deformation function corresponds to a unique applied
loading, of course. This interpretation of the genesis of whole-structure
deformation functions will, however, prove convenient in subsequent
discussions.
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== 7 == 7
/ / / /
/ , / /
/ / /
[ R “/ / ] N
- 1 /= /
| | / /
| | / /
| / i
h - =1
9 9,
e | \ /
l | | |
| | / \
—_—— | :
\ /\\______/’k\
| ' '
\ \ '
/ ‘ I
nly "’g I'L} tarl
13 94

Figure 4 - Example: Static Loadings Corresponding to Whole Structure
Deformation Functions Associated with Four Generalized
Coordinates, ql, qz, q3 and q4

3-2
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frame analysis and describes a digital program'" which executes solutions to
a wide class of problems. After the v's and @'s have been evaluated, the

M;l’s and K}?'s of Equations (2-4) may be computed from Equation (2-5).

Where m m
M = -
il E Mj! and Kjl Kjl R (3-2)

all m all m

the energies of the entire system are:

_ “Tr- -
T = Z T = “21‘[611 c.12 {13 C.14] My M, My M, ql
all m M,, My, M,,||4q,
M33 M34 f13
Symmetric M44 é.l4 ’
| I

and

_ m 1 E REP
v o= E : v 2 [ql 9 93 q4] K1 K2 Kis Kyl
allm \
K K K q
22 “23 24| |% (3-3)
Kiz K34 |93
K

S tri .
L-yrnme ric 44 Lq4J

Instead of using Equations (2-5) and (3-2) to compute the Kjﬁ's’
advantage can be taken of knowledge of the static loading distributions

corresponding to the whole-structure deformation functions as follows:

The distributed forces and moments acting over the members to
comprise the static loading which will produce the whole-structure deforma-
tion function associated with the generalized coordinate q. will be repre-

sented by the symbols 6'4"?; and ,d?; , respectively (mth member, direction-i

* . . .
This program is incorporated in the dynamic analysis program discussed
in Section 6,

3-3
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in the member reference fraxne). From external work considerations,
E / [ .j(s s) +J ] ds . (3-4)
all m len i=1

It will be convenient to re-write Equations (3-3) in compact form as:
B3 . b3
2T = Q° MQ, and 2V = Q KQ. (3-5)

In the absence of dissipative effects and active externally applied forces,

Lagrange's equation is

= 0. (3-6)

Accordingly, MQ + KQ = 0, and solutions of the form Q = sinwtX yield
the eigenproblem,

w* MX - KX = 0. (3-7)

Several well-known numerical methods are suitable for solving Equation
(3-7); provided it is not of high order nor poorly conditioned.” For the
example illustrated on Figure 4, the four solutions to Equation (3-7) would

be approximately as follows (depending on the member properties, etc.):

1

1
X1 = first lateral mode = ,
0

Lo—d

-3
Poorly conditioned matrices are frequently a consequence of poor mathe-
matical modeling; e.g., representing a rigid connection by an elastic spring
many orders of magnitude stiffer than the connected elements themselves.

3-4




XZ = second lateral mode =
X3 = first vertical mode =
X4 = second vertical mode =
3-5
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Scction 4

REPETITIVE PROCEDURE FOR OBTAINING A SEQUENCE
OF IMPROVED DISPLACEMENT FUNCTIONS

In the following discussion, it is assumed that very accurate approxi-
mations of the lowest N- 1 frequencies and mode shapes of the system have
already been determined, and that an initial approximation* of the Nth mode
is known. To calculate a precise approximation of the Nth mode, a sequence
of N-order eigenproblems of the type discussed in the preceeding section are

solved. Each solution produces an improved approximation of the Nth mode.

The first N -1 whole-structure deformation functions used in each of these

solutions are the previously-determined lowest N-1 system modes, and the

Nth function is the most recently-obtained approximation of the Nth mode.

The eigenvector associated with the highest-frequency solution of the lth

of these N-order eigenproblems will be represented as:

o —

(£)
*IN

(£)
XoN

(£)
XNN
- R—

The superscript () indicates that this vector was obtained using the lth

approximation of the Nth mode (this notation will have the same meaning
when used elsewhere in this section). Corresponding to this solution, the

lth interim approximation of the NthL system mode is comprised of the set

“Initial approximations, which are discussed in Section 5, may be very
coarse and still not adversely affect the solution proce'ss.
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of member cross-section displacement and rotation functions defined below.

N
~m(l) _ (&) .m(L)
ViN @ = E : XN Vi

j=1

N
~m(f) _ (£) ,m({)
iy = E xJ.N 915 . (4-1)

From these interim functions, a set of distributed force and moment loadings

of the members are computed as follows:

Distributed force intensity = gr?;u) = llm “7?;1(!)
. . . . B m(f) _ ,m ~m(f)
Distributed moment intensity = ‘JiN = Pi 01N (4-2)

The deformation of the structure corresponding to this static loading is the

(£ + 1)-th approximation of the Nth system mode.

It is interesting to note that since the first N-1 whole-structure
displacement functions are the previously-calculated final approximations of
the lower system modes, all of the off-diagonal elements of M and K except
those in the last column and row are extremely small compared with diagonal

elements of the corresponding row and/or column.
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Section 5

INITIAL APPROXIMATIONS OF SYSTEM MODES
5.1 GENERAL

Initial approximations of systemm modes are required for the repetitive
procedure outlined in Section 4 to be executed. In Section 5.2, a method is
described for obtaining relatively accurate sets of approximate solutions.
However, recent experience with the digital program described later in this
report indicates that generation and use of a set of accurate initial approxi-
mations of the system's modes is not necessary; nor, from the standpoint of
computational efficiency, is it desirable. Instead, convergence of the repeti-
tive process previously described has been found to be so rapid that the same
whole-structure displacement function — typically one associated with a simple
static loading of the structure — may serve quite well as the initial approxima-
tion of each of the several system modes to be calculated. Consider the plane-
frame example illustrated on Figure 4. The structure was analyzed using the
structural deformation corresponding to the static loading illustrated on
Figure 5 as the initial approximation of the first mode, then the second, and
so-on through the fourth system mode. Frequency approximations obtained
at successive steps in the repetitive process are summarized in Table 1
(initial solutions in the top row, first improved solution in the next row, etc.).
Figures 6 through 9 are plots of the final approximations of the system modes

(corresponding to the last row of frequencies in Table 1).

Table 1

Frequency Approximations

1st Mode 2nd Mode 3rd Mode 4th Mode
7.0233337 13.885242 33.963648 38.535649
3.6164171 12.262470 21.322420 28.435214
3.5823153 12.226653 19.024036 23.568244
3.5820643 12.222883 18.659281 22.949570
3.5820623 12.222252 18.526616 22.892897
3.5820624 12.222137 18.469786 22.887886
3.5820625 12.222115 18.445507 22.887443
3.5820625 12.,222111 18.435226 22.887406
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All members are tubes,
Inside diameter = 1.0 in.,

Outside diameter = 1.5 in.

150 in.
20
C : :30
100 in.
50 ) 40
100 in.
TIYrT rrrrr

Figure 5 - Plane-Frame Example
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Figure 7
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"MODE NUMBER 3
ITERATION NUMDER O
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Figure 8
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FREQUENCY = 2.2007X10°0Y CPs

Figure 9

5-6

e “ee
..
...-"' fea,,
. e,
.
4
:
.
:
cesv et e, :
v .
-.' ..-
. -
. . .
.
.
... ‘e
. .
* .
p -
: :
: .
: :
: :
H H
: :
: H
: <
: !
¢
k.
]




LMSC/HREC A784826

5.2 JOINT MOTIONS AS GENERALIZED COORDINATES

A method of obtaining a relatively accurate set of initial approxima-
tions of system modes in presented below. The digital program described in
Section 6.1 contains routines for (optionally) executing this procedure;
however, as pointed out in the preceeding discussion, the use of accurate
initial approximations is generally unnecessary in implementing the pro-
cedure outlined in Sections 3 and 4. Accordingly, these routines are

normally bypassed for economy of computer execution time.
In the method outlined below, the generalized coordinates are the
displacement and rotation components of the joints. Member displacement

functions are the quasi-static deformations associated with member end

motion.

Joint motion components (with respect to the primary reference frame)

will be represented by the following symbols:
Ulk = direction-k displacement of the ith joint,
U = di . . .th . .

ok = irection-k rotation of the i joint.

The motion components (with respect to the mth member reference frame)

of the end points (origin: n = 1, terminus: n = 2) of the mth member are:

Vﬁn = direction-k displacement of nth end point,
V;?{n = direction-k rotation components.

The following abbreviated notation will be useful:

5-7




e

For j =1 (displacements) and 2 (rotations),

Also,

n

i
Ujl
U;Z , and V;’nn
i
Uj3
i
Ul mn
; and V
U,

= V.

LMSC/HREC A784826

Throughout the following discussion, it is assumed that the origin (n = 1)

and terminus (n = 2) of the mth member are connected by rigid links to the

.th

i andﬂl joints, respectively. Accordingly, the R and D matrices defined

in Section 2.1 may be used to express the linearized relation between joint

and member end-point motion as follows:

In the above equations, and where used subsequently, ¢1 and I

o)

-6-
W

]
w

¢ R ?s

(5-1)

are
1

! x { zero and identity matrices, respectively. Using the definitions,

5-8
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m mn
R & I, D
o 3 3
G = m )
¢ R ¢; 13

Equations (5-1) may be written compactly as:

le - C‘ml Ul

ym2 | gm2 (5-2)

As discussed later, the kinetic and potential energies of the mth
member may be expressed as quadratic forms in its twelve end point motion

components. That is,

3 €] B
omo. L [(\-/.ml) (\-,m2>] amll ml2 ml

2
(Am12)* AmZZ va , and
\ 1L i1
v oo _é_ [(Vm1>* <V.m2)*] PBmll pmli2 } val-.‘
(an)* 22 | Lsz  (5-3)
L - i

m

Using Equations (5-2), T and v may be expressed in terms of the

generalized coordinates as

PR . .
o™ - % [<U1> (U_]>] Zmll Zml2 ot
@le) -AmZZ o) ’
m 1AV LY —mll =ml2 i
VA (U1> (UJ) B™ B u'
| . .
<§m12) - gm22 il (5-4)
5-9




where

Kmll Kle

%
(Km12> szz

and

§m11 B

—=ml2

E3
(EmIZ) -ﬁmzz

Accordingly, the kinetic and potential energies of the entire frame may be

written as

and

where for an n-jointed frame,

m

¢6 Aml 1
m2>* (AmIZ)*
¢6 Bml 1
mZ) (BmIZ)*

™| —

D —

11 12

22

Symmetric

.
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Ale Gml ¢6

22 2
AR e G

Ble Gml 956

m22 ¢6 sz

nn
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Kl 1 Kl 2 . . ]
KZZ ) ) )
K = . . . ,
| Symmetric Knn_

and the 6 x 6 submatrices M" and K" may be constructed by the following

algorithm:

e First, set all of the MY's and K'Y's identically equal to zero,

e For each member in the frame, add terms to these matrices
as follows, based on Equation (5-4):

add Kmll to Mu, Kmlz to 13, szz to M¥J ,

gLl K", gmiz ., KY, and FM22 ¢, ki .
If some joint motion components are set equal to zero as restraint conditions,

the corresponding elements of U and the associated rows and columns of

M and K are deleted.

As before, Lagrange's equation leads to the undamped free-vibration

eigenproblem, '(«)2 MX - KX = 0, where U = sinwt X,

The formulation outlined above, which is essentially the one discussed in
Section 1, gives excellent approximate solutions to many types of problems.
Its primary shortcoming is that for many-jointed frames, it requires solu-

tion of high-order eigenproblems of the type (wZM - K)X = 0.

Also, in some applications it is possible that the quasi-static displace-
ment functions may not give suitably accurate results; and, although such
"restraint errors' may be reduced by introducing additional joints along
members, addition of joints leads to high-order eigenproblems with their

associated numerical difficulties and high cost of solution.
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For particular types of members, the A™ and B™ matrices appearing
in Equations (5-3) are easily evaluated. In general, for static displacement
functions associated with member end motion, the cI.n's (member displace-
ment function coefficients) defined in Section 2.2 may be identified simply as

the end point motions, e.g.,

clin = Vliril = direction-1 Idisplacement of member origin,
c;n = Vlir;]' = direction-2 displa.cenﬂ'ent of member origin,
o
.
czn = V§n31 = direction”-3 .rotaAtion Qf member origin,
c;n = vrll';Z = direction-1 displacement of member terminus,
an = Vlir‘l?‘z = direction-2 displacement of member terminus,
o
.
clinz = V;rgz = direction-3 rotation of member terminus.

Then the coefficient matrices appearing in Equation (2-4) may be interpreted as

Amll Ale Bmll Ble

¢ and ” ,
(Aml 2> A2 (Bml 2) pm22

: | L /

respectively, and Equation (2-5) may be uéed to compute individual elements

of these matrices.
Each of the twelve sets of member displacement functions (V;I.1 and

0;? for the j = 1 through 12) is the deformation of the member associated

with a unit value of the corresponding end point motion, with the other
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eleven end motion components identically zero. For particular types of

members, these displacement functions are easily identified.

Consider for example a straight, uniform simple beam having two
planes of cross-section syrnxnetry.‘ If the member origin and terminus are
defined to lie on the section centroid, and the member reference frame axes

are oriented as indicated on Figure 10, the interior deformation of the

3

7

Terminus

Ori gin—\

Figure 10 - Prismatic Beam

member (using the notation introduced in Section 2.1) is:

where £ = member length,

Bending in plane-1:

-
m _ Ml ml_ -, 213 ml m2 1 ml m2
ul (S) = Vll +V22 s + s —2— (—V +V >-T<2V +V )]




.
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Bending in plane-2:

m . _ oml . ml , 2[ 3 (/. ml , . m2\,1 (,oml, . m2
uZ(S) = V12 -Vle-(-s —-—(—V +V )+T <2V +V )]

Axial extension:

m2 ml
m, . _ Vm1+V13 - Vi3
us(s) = Vi3 7
Torsion:
m2 ml
SR = vl Vs - Va3
3 - 23 £
For a simple beam,
/
m _ [m
$7s) = [a3s)]
/7
¢;n(s) = -[ulin(s)] (5-6)

From the preceding equations, all of the member displacement

functions are easily identified. For example, Vxlnl(s), the direction-1 dis-

placement associated with a unit value of Vlinil is
m s2 s3
Vll(S) = 1-3[—2—'('2;3— . (5-7)

Note that as a consequence of the symmetry characteristics of the simple
beam, many of the displacement functions are identically zero. The result
of substituting the set of relations of the type indicated by Equations (5-7)
and (5-6) into Equations (2-5) is indicated below. The mass per unit length
is constant, 4. Rotary inertia other than that associated with torsion is

neglected.
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12 m 6 m
12 m 6~ .m
0 ;Z—-EII 0 -7EI] 0 0
m
gmll _ 1 0 0 EA 0 0 0
= 5 ,
0 -%Elm 0 4}*:11'1rl 0 0
6 m m
TEL 0 0 0 4EL 0
0 0 0 0 0 GJ
12 m 6 m
12 m 6 m
0 0 EA™ 0 0 0
BmZZ - 1 , and
. 0 %—Elm 0 4“1:“.1’;n 0 0
--%Elrzn 0 0 0 4EL; 0
i
0 0 0 0 0 G
l2.m 0 0 Spm
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0 _ m
amiz _ 1 0 EA 0 0 0
T4 6 m m
, 0 TEL 0 2ET) 0 0
e 0 0 2EIR
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Section 6
RESULTS

6.1 PROGRAM DESCRIPTION

A digital program has been developed to implement the formulation
described in the preceding sections of this report. It is coded entirely in
Fortran IV, and in its present configuration requires approximately 26,000

words of core storage and five scratch files for intermediate data storage.

The program requires as input data a minimum definition of the geom-
etry, boundary conditions, etc., together with control variables governing
execution of various options. Figures 11 and 12 illustrate the general

arrangement of the program.

Members may be either simple beams or Timoshenko beams with mass
and stiffness properties varying piecewise-linearly along their lengths., Rigid
masses may be attached to the joints, and member end connections to joints
(either directly or via rigid links as described in Section 2.1) may be pinned,

rigid, or elastic,

The routine used to solve the (602 M-K)X = 0 eigenproblem is the
one used in References 4, 5, and 6. Present DIMENSION statements allow
solution of 60-th order systems. These routines are fast and accurate for
low-order, well-conditioned eigenproblems of the type required to implement
the procedure outlined in Section 4. Since solutions are usually computed
only for the lowest few system modes, no more than a few seconds of computer

execution time are normally required by this routine.

The routines for analyzing structural deformation due to static loading

were extracted from the Lockheed FRAME program described in Reference 3.
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Start

'

Read data defining the geom-
ctry, material properties,and
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restraint conditions of the
frame. Also read variables
controlling program options,

Exccute calculations in prep-
aration for evaluation of

structural deformation under
various static loading
conditions,

A

Are some
initial approximations
of system modes to be
computed on the basis
of specific static
loadings ?

Read static loading definitions,
and compute the corresponding
structural deformations. Store
this information on a scratch
data file for later use as initial
approximations of system
modes, Optionally print and
plot descriptions of these

Are modal
approximations
to be computed using
joint motions as
generalized
coordinates ?

Compute the system mass and
stiffness matrices as outlined
in Section 5.2. Solve the
corresponding eigenproblem,
Print and plot the results
(optionally). If any of these
solutions are to be used later
as initial approximations of
system modes, store the re-
quired information on a scratch
data file.

Is execution
to be terminated

functions,
&

Compute precise approximations
of cach of the first N modes as
outlined on Figurel2, N is speci-
fied in the input.

v

Exit

at this point?

Exit

Figure 11 - Flow Chart of Computer Program

6-2




Entry

’

Execute the
following procedure
to compute a very
accurate approximation
of the j-th mode
of the system
G=L2,...,N)

Exit,

Retrieve from data files the
set of member displacement
functions to be used as the
initial approximation of the.
j-th mode of the system,

Store the current (final)
approximation of the j-th
mode in the data file con-
taining the corresponding
data for system modes 1,
2,...,j-1. Print and plot
descriptions of this solution.

Is the
convergence criterion
satisfied ?
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Loop Complete

Read from data files the sets of
member displacement functions’
comprising the final approxi-
mations of system modes 1, 2,
«+«., j-1, Using the current
approximation of the j-th sys-
tem mode, compute the coeffi-
cients Mjj and K;; (for i=1,2,...,
j)y as described in Section 4.
Note that at this point all other
elements of M and K have pre-
viously been computed (except
for diagonal elements, they are
all very nearly zero).

Solve the j-order eigenproblem,
(w¢M - K) X =0.

Retrieve displacement function
data from storage files; compute
the sets of Vand 6 functions,
then the <% and d functions as

defined in Section 4, Compute
the new approximation of the
j-th mode., Optionally, print
and plot this data.

Figure 12 - Flow Chart of Repetitive Technique
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The present DIMENSION statements in these routines allow frames having
up to 180 non-constrained joint motion components.* Early in execution,

the program computes the structure's flexibility matrix for later use in
computing detormations under various loading conditions. The execution
time required for this step varies approximately as the square of the number
of non-constrained joint motion components. About one minute (IBM 7094)

is required to compute the flexibility matrix of a space frame having twenty

joints.

Deformations of individual members are analyzed, using one of the
routines (NUB) developed originally for use in the program described in
Reference 6. The solution method used in this routine (which is essentially
the one outlined in Reference 3 for analysis of tapered beams) represents
non-uniform beams as a sequence of short uniform elements. The interpola-
ting functions used over the interior of the elements are the displacement
and cross-section rotation functions associated with edge loading of the

elements.

The criteria presently used in the program for terminating the sequence
of improved modal approximations are: either (1) a limiting number of
approximations have been executed, or (2) the frequency change from one
approximation to the next is smaller than a stated fraction of the current

frequency approximation.

A certain amount of numerical error will, of course, be present in all
solutions. One approach to the identification of this error in physical terms

is explained below. For simplicity, abbreviated notation will be used in

*The capacity of the program may be increased substantially by replacing
the static analysis routines now used with a large frame analysis routine,
such as Lockheed's proprietary FRAME-66 program which is applicable
to frames having many thousands of members.
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discussing the lateral motion of a simple beam in one of its principal bending

planes. (The symbols ;rin?’ o,‘..;nn and Vnin, 1?'“

o

will be replaced by Vn, =

and vn+ 1 , respectively.)

Suppose that associated with the n‘Ch interim approximation of a system
mode the lateral motion of 2 member in one of its principal directions is
computed as v(s). As the next step in the solution process <% (s) is

evaluated:

F = W pv? (6-1)

where @ is the current frequency approximation, Next, the static analysis

problem,

4
E1 -2, vty - o (6-2)
Os

is defined and vn+1 is computed. Now, suppose (disregarding momentarily

n+il

how Vv was obtained) that the motion of the frame is such that

u = sinwt vl . (6-3)
The beam equation is
64
El =7 =-pid+ qt) (6-4)
s

where q is the externally applied distributed force function. Substitution

of Equation (6-3) into Equation (6-4) gives:

4

EI sinwt -3—4: (

os

vnﬂ) = wzu sinwt V21 4 qlt) (6-5)
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Substitution of Equations (6-2) and (6-1) into Equation (6-5) gives:

alt) = % psinet W - v
If the solution is exactly a free vibration mode, q is identically zero;
however, since some numerical error is always present, a reasonable
assessment of the physical significance of the error can be made by
comparing the magnitude of q as indicated by Equation (6;6) with the
corresponding inertia force [Equa.tion (6-1)] , since q is the external
force which would be necessary to cause the system to actually execute

the motion u = sinwt Vn+1.

The 0)2 MX - KX = 0 eigenproblems solved during the repetitive
process outlined in Section 4 have several interesting properties. At each
step in the repetitive process, it is necessary to solve for only one mode
and frequency (the highest one). Also, only the elements in the last row
and column of M and K need be re-evaluated at successive steps in the
repetitive process. Since the first j-1 generalized coordinates being usezl
during successive approximations of the jth mode are accurate approximations
of system modes, all of the off-diagonal elements of M and K are nearly
zero, except for those in the last row and column. Furthermore, in solving

)th approximation of the jth fre-

this eigenproblem the nlCh time, the (n-1
quency generally affords a close upper bound to new jth frequency approxi-
mation, These special properties afford significant opportunities for economy

of computer execution time in calculating eigenproblem solutions.

The repetitive solution procedure occasionally exhibits a certain
peculiar effect when solving for higher modes, especially if the structure
has one or more symmetry planes. For example, the program may require
only a few repetitive steps to solve accurately for each of the first five modes;
then obtain in its initial solution for the sixth mode a good approximation of
the seventh (or higher) mode. In successive steps, it may then converge to
a precise approximation of the seventh mode and subsequently require a num-
ber of additional repetitive solutions before the modal approximation begins
to shift toward the lower mode.
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6.2 EXAMPLES

Three examples are presented to illustrate the program's capabilities.
All of the mode shape plots shown on Figures 14 through 29 were automatic-
ally generated by the program through the use of a Stromberg-Carlson
4020 plotter.

Example A, illustrated on Figure 13, involves a planar structure
containing 34 joints and 49 members. The first three planar modes of this
structure were computed using the repetitive technique discussed in Section

4. Plots of the final approximations of these modes are shown on Figures
14, 15 and 16.

The geometrical form of Example B, illustrated on Figure 17, resembles
approximately a Titan III launch vehicle. For simplicity, uniform beam
properties are used in this example; however, since provision is included for
arbitrarily varying inertia and stiffness properties, vibration characteristics
of vehicles of this type (or even more complicated ones, such as proposed
Saturn IB's with additional '"'strapped-on'' solid propellant motors) can be
computed by the program. The first six free-free modes (above the six rigid-
body modes) of this structure are shown on Figures 18 through 23. Note that
the last of these is a torsional mode. These solutions were computed using
joint motions as generalized coordinates, as described in Section 5.2. For
improved accuracy, intermediate joints were introduced at the mid-spans of

each of the four beams.

In Example C, illustrated on Figure 24, joint motions were used as
generalized coordinates. The structures's first four modes are shown on

Figures 25 through 29. Figure 29 shows the fourteenth mode.
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Figure 14
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Tube,

Inside Radius = 9 in.
QOutside Radius = 10 in.

Hinged Connections ——
(top and bottom)
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Rigid Arm |
(top and bottom)
8
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Figure 17 - Example B
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HOOE NUMDER ]
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Figure 19
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MODE NUMDER 9®

*0
FREQUENCY = 1.6971X10°°° CPs

Figure 20
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HWODE NUMOBER 10
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Figure 21

6-16



I Gou SuR OGN0 ONO OO0 NS AN N D 0 N o v an N s am e

’

LMSC/HREC A784826

MODE NUMDER 13
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Figure 22
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MODE NUMBER 12

FREQUENCY = 2.4608K10" "0 cPs

Figure 23
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Figure 26
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